1. Принимаются параметры приточного воздуха:
- температура tп=20о С;
- энтальпия hп=43,1 кДж/кг;
- относительная влажность 60%.
2. По справочным данным определяется продолжительность каждого интервала стояния энтальпии наружного воздуха hн, превышающей величину hв (табл.4.)
Таблица 4. Продолжительность каждого интервала стояния энтальпии наружного воздуха, превышающей величина hв
Энтальпия наружного воздуха hН, кДж/кг |
44,5 |
47,4 |
50,4 |
53,3 |
56,6 |
60,4 |
64,2 |
67,5 |
71,7 |
Продолжительность ее стояния n, ч |
296 |
261 |
215 |
171 |
129 |
77 |
45 |
10 |
3 |
3. Принимается температура охлажденной в испарителе воды, обеспечивающей требуемый луч процесса в кондиционируемом помещении, tx1=12о C, соответственно температура кипения хладагента t0=tx1-3=12-3=9оC. Данная температура остается неизменной для всех расчетных режимов.
4. По h-d диаграмме определяем температуру мокрого термометра для каждого расчетного состояния наружного воздуха tм =16 ºС, температуру охлажденной в вентиляторной градирне воды принимается равной
tw1=tм+4ºС = 16 + 4 = 20 ºС, (36)
а температура конденсации tк=tw1+ (4-6) 0C = 20 + 5 = 25 ºС (37)
5. Принимаем максимальную величину холодопроизводительности машины Q0max=0,5 МВт, соответствующая максимальной энтальпии наружного воздуха hнмакс = 71,7кДж/кг
Для других режимов холодопроизводительность рассчитывается пропорционально отношению энтальпий
(hн - h11x1) / (hнмакс-h11x1), (38)
где h11x1 - энтальпия насыщенного воздуха при температуре tx1.
6. Рассчитываем характеристики режима работы ХМ для каждого интервала энтальпий hн: Q0, Qк, tk, λ, ηi,ηe,Ga, Vт, Na,Ne,ε, и оформляем в табличном виде (табл.5)
Величины |
Интервалы температур | ||||||||
44,5 |
47,4 |
50,4 |
53,3 |
56,6 |
60,4 |
64,2 |
67,5 |
71,7 | |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1. Продолжительность интервала |
296 |
261 |
215 |
171 |
129 |
77 |
45 |
10 |
3 |
2. Температура мокрого термометра tм, оС |
16 |
17 |
19 |
20 |
21 |
22,1 |
23 |
24 |
25 |
3. Температура охлажденной в вентиляторной градирне выды tw1 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
4. Температура конденсации tk, ºС |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
5. Температура конденсации tK, оС | |||||||||
6. Тепловая нагрузка Qк, МВт |
0,161 |
0, 207 |
0,255 |
0,302 |
0,354 |
0,416 |
0,477 |
0,532 |
0,601 |
7. Холодопроизводительность испарителя Qи, МВт |
0,139 |
0,178 |
0,218 |
0,256 |
0,300 |
0,350 |
0,401 |
0,444 |
0,500 |
8. Температура испарения tи, оС | |||||||||
9. Степень повышения давления p |
1,7 |
1,73 |
1,75 |
1,8 |
1,83 |
1,85 |
1,90 |
1,93 |
1,95 |
10. Коэффициент подачи l |
0,833 |
0,832 |
0,831 |
0,829 |
0,828 |
0,826 |
0,824 |
0.823 |
0,822 |
11. Расход хладогента через испаритель Gд, кг/ч |
0,97 |
1,26 |
1,56 |
1,86 |
2, 19 |
2,57 |
2,96 |
3,29 |
3,73 |
12. Удельная адиабатическая работа компрессора lад, кДж/кг |
10 |
11 |
12 |
12,50 |
13 |
13,50 |
14 |
14,50 |
15 |
13. Адиабатическая мощность компрессора Nад, МВт |
0,01 |
0,014 |
0,019 |
0.023 |
0,028 |
0,035 |
0.041 |
0,048 |
0,056 |
14. Индикаторная мощность компрессора, Ni, МВт |
0,013 |
0,019 |
0,026 |
0,032 |
0,039 |
0,047 |
0,057 |
0,065 |
0,077 |
15. Действительный объём, описываемый поршнями компрессора, Vд, м3/ч |
0,046 |
0,059 |
0,074 |
0,087 |
0,103 |
0,121 |
0,139 |
0,155 |
0,175 |
16. Теоретический объём, описываемый поршнями Vт, м3/ч |
0,055 |
0,071 |
0,089 |
0,106 |
0,124 |
0,146 |
0,168 |
0,188 |
0,213 |
17. Мощность трения, Nтр, МВт |
0,002 |
0,003 |
0,004 |
0,004 |
0,005 |
0,006 |
0,007 |
0,008 |
0,009 |
18. Эффективная мощность компрессора Nе, МВт |
0,016 |
0,022 |
0,029 |
0,036 |
0,044 |
0,053 |
0,063 |
0,073 |
0,085 |
19. Механический КПД компрессора hl мех |
0,86 |
0,87 |
0,88 |
0,88 |
0,89 |
0,89 |
0,89 |
0,9 |
0,9 |
20. Эффективный коэффициент КПД hе |
8,962 |
8,137 |
7,433 |
7,09 |
6,823 |
6,573 |
6,314 |
6,096 |
5,868 |
21. Эффективный холодильный коэффициент ε |
8,962 |
8,137 |
7,433 |
7,09 |
6,823 |
6,573 |
6,314 |
6,096 |
5,868 |
Определение режима работы нс-ii
Выбор режима работы насосной станции второго подъема (НС-II) определяется графиком водопотребления (рис. 1.). В те часы, когда подача НС-II больше водопотребления поселка, избыток воды поступает в бак водонапорной башни (ВБ), а в часы, когда подача НС-II меньше водопотребления поселка, недостаток воды посту ...
Расчет радиусов зон разрушения
Для оценки уровня воздействия применяем тротиловый эквивалент. Тротиловый эквивалент взрыва парогазовой среды Wт, определяемый по условиям адекватности характера и степени разрушения при взрывах парогазовых облаков, рассчитывается по формуле
, (77)
Где 0,4 – доля энергии взрыва парогазовой смеси;
0,9 – д ...
Составление ведомости объемов земляных работ
Таблица 1. Ведомость объемов земляных работ
Наименование строительных процессов
Единица измерения по ЕНиР
Количество единиц измерения
1. Срезка растительного слоя грунта I категории бульдозером ДЗ-104
1000 м2
3,31
2. Транспортирование ранее разработанного растительного слоя грунта ...