Пути решения проблем ТГсВ

Теплозащита зданий и сооружений.

В условиях сурового российского климата применение современных высокоэффективных теплоизоляционных материалов в строительстве жилых и офисных зданий является настоятельной необходимостью. Правильно спроектированная и смонтированная теплоизоляция позволяет значительно повысить уровень комфортности, тепло- и звукоизоляции как здания в целом, так и отдельных помещений, а также достичь существенного снижения энергозатрат и, следовательно, сокращения эксплуатационных расходов.

Применение недостаточной, малоэффективной теплоизоляции, либо неправильное ее размещение закономерно приводит к ухудшению параметров микроклимата помещений. Надо заметить, что по строительным нормативам параметры микроклимата жилых помещений могут меняться в достаточно узких пределах: температура около 20±2oС, допустимая влажность от 20 до 60%, скорость движения воздуха не более 0,2 м/сек. Поэтому очень важно использовать такие конструктивные теплоизоляционные решения, которые могли бы существенно снизить нагрузки на оборудование отопления и кондиционирования. Прежде всего, обозначим наиболее проблемные с точки зрения теплопотерь конструкции в типичном жилом или офисном помещении. Установлено, что до двух третей всех теплопотерь происходит через внешнюю стену и окна (наружные ограждающие конструкции), поскольку они имеют наибольшие площади контакта с окружающей средой. Также весьма ощутимая доля теплопотерь (до 25%) приходится на покрытия, также на внутренние стены, поскольку в местах контакта плит перекрытий с несущими стенами, в местах примыкания к наружным стенам внутренних стен и перегородок образуются так называемые «мостики холода» - участки интенсивного теплообмена с окружающей средой. При образовании разности температур между внутренней и наружной поверхностями ограждения, в материале ограждения возникает тепловой поток, направленный в сторону понижения температуры. Причем, теплопотери тем больше, чем меньшее термическое сопротивление имеет конструкция. Для обеспечения требуемого термического сопротивления стен и перекрытий возникает необходимость в наличии эффективного теплоизоляционного слоя из материала с малой теплопроводностью.

Так, к примеру, слой минераловатного утеплителя толщиной 50мм по своим теплоизоляционным свойствам сравним со сплошной кирпичной кладкой толщиной 890 мм. В современном строительстве находят применение широкий спектр теплоизоляционных материалов, различающихся физико-химическими свойствами и, соответственно, технико-эксплуатационными характеристиками. По структуре твердой основы теплоизоляционные материалы можно четко разделить на волокнистые (природным прототипом которых является дерево или хлопок) и ячеистые (по сути своей – твердые пены).

В волокнистых материалах, как правило, используется твердая основа минерального происхождения - это могут быть базальтовые горные породы или стекло. А в ячеистых (вспененных) материалах могут использоваться как минеральные компоненты, так и органические полимеры. В этой группе наибольшее распространение получили теплоизоляционные материалы на основе пенополистирола (вспененного или экструдированного), пенополиуретана, пенобетона, вспененного стекла и т.п.

Каждое конкретное теплотехническое решение предъявляет к теплоизоляционному материалу набор специфических требований, зависящих от условий его эксплуатации. В соответствии с этими требованиями и осуществляется выбор типа материала.

Мы рассмотрим наиболее распространенные решения для уменьшения теплопотерь через наружные стены, окна, внутренние стены и перекрытия и укажем подходящие для этих решений теплоизоляционные материалы и технологии.

Область применения
1.1. Технологическая карта составлена на устройство и ремонт металлической кровли. 1.2. Технологическая карта составлена в соответствии с "Руководством по разработке технологических карт в строительстве". Устройство металлической кровли 1 До начала устройства металлической кровли должны быть вы ...

Грузовая работа
Грузовая работа R тыс.м3км/год, определяется по формуле: (1.8) где a, b, c, d, e - длины участков пути, км; - коэффициент развития трассы. Принимаем a = 0,71 км; b = 0,57 км; c = 0,84 км; d = 0,26 км; e = 1,9 км; = 1,15; R = 112(0,71+0,26+1,9) 1,15 + 135(0,57+0,26+1,9) 1,15 + 99(0,84+1,9) 1,15 = 1096 ...

Разработка первого варианта. Выбор схемы моста
В первом варианте принята схема 42,6+63,6+2х42,6. В качестве пролетных строений используются сталежелезобетонные пролетные строения. Типовой проект серии 3.503.9–62. Опорные части металлические секторные, типовой проект 3.501.1–129. Профиль моста двускатный i=0.02. Водоотвод с проезжей части моста обеспечи ...

Главное меню


Copyright © 2026 - All Rights Reserved - www.smartarchitect.ru