На промежуточную опору моста действуют постоянные погрузки от суммарного веса пролетных строений и проезжей части Р1, весы опоры РОП и ряд временных нагрузок (от передвижного состава подвижного транспорта Р2 , сил ударов передвижного состава Fy, сил торможения FT, давления льда Fл и прочее).
Нормативный вес пролетных строений и элементов проезжей части рекомендуется вычислять по данным типичных проектов или аналогов.
Нормативная временная вертикальная нагрузка от передвижного состава на автомобильных дорогах принимают в соответствии с нормами [1, п. 2.12-2.15]. В курсовой работе вертикальные погрузки задаются.
Нормативный вес опоры
где Vо , Vр– объем соответственно тела сопротивления и ригеля, м3;
– удельный вес бетона, кН/м3.
Нормативная горизонтальная поперечная нагрузка от ударов передвижного состава Fy [1, п. 2.9], независимо от числа полос движения по мосту, надо принимать 5,9К, где К – класс погрузки.
В курсовой работе горизонтальная нагрузка от торможения берем из задачи FT = 850 кН.
Нагрузка от давления льда на сопротивления моста при отсутствии исходных данных о ледовом положении надо определить по формуле:
где y - коэффициент формы сопротивления (исчисляется по [1, табл. 2 приложения 10]. Для опоры на полокружного контура y = 0,9; расчетное сопротивление льда Rчл = кп×Rч1.
Rч1 – граница прочности льда на дробление (с учетом местного сжатия) для первого района страны;
кп – климатический коэффициент для данного района страны; определяется по [1, табл. 1. приложения 10);
b – ширина опоры на равные действия льда, г;
t – толщина льда, г;
Равнодействующую ледовой погрузки FЛ необходимо прикладывать в точке, расположенной на 0,3t ниже расчетного уровня воды.
Для первого района страны Rr1 в начальной стадии ледохода (или первом передвижении на равные меженной воды) равняется 735 кПа; при наивысшем уровне ледохода – 441 кПа.
При указанных на рисунке размерах опоры
Расчеты усилий от действующих нагрузок и их соединений по обрезу фундамента приводим в форме табл. 2 и 3.
Таблица №1 Усилие в разрезе по срезу фундамента
Силы, которые действуют в разрезе до среза фундамента |
Силы, кН |
Плечо относительно оси, м |
Момент относительно оси, кНм | |||||||
Вертикальные |
Горизонтальные | |||||||||
Нормативные |
Коэффициент, gf |
Расчетные |
Нормативные |
Коэффициент, gf |
Розрахункові |
X |
Y |
Mx |
My | |
Вес: Опоры |
4594 |
1,1 |
5053 | |||||||
Пролетного строения и проезжей части 2*Р1 |
13000 |
1,2 |
15600 | |||||||
Нагрузка: временная АК на одном пролете Р2 временная АК на двух пролетах 2*Р2 |
5500 11000 |
1,2 1,2 |
6600 13200 |
0,75 |
4950 | |||||
Сила торможения Fт |
550 |
1,2 |
660 |
6,8 |
4488 | |||||
Давление льда: На уровне УВВ Fл,1 На уровне УМВ Fл,2 |
244 661 |
1,2 1,2 |
293 793 |
5 1 |
1465 793 |
Максимальный коэффициент часовой неравномерности водопотребления:
K ч max. = max. • max. (п. 2.2 (4))
Принимаем по п. 2.2 и табл. 2 max. = 1,2 — зависит от степени благоустройства;
max. =1,2 — зависит от числа жителей в населенном пункте.
K ч.max. = 1,2 • 1,2 = 1,44 K ч.max. =1,44
q ч.max.= (1,70 • 3498,30)/24 = 247,80м3/ч
Расход воды на хозяйственно-питьевые нуж ...
Установка пролётных строений в проектное положение
Основные методы установки пролётных строений в пролёт – это продольная и поперечная передвижка по капитальным и стационарным вспомогательным опорам, передвижка на катучих опорах и перевозка на плавучих средствах. Все эти методы обеспечивают горизонтальные перемещения, которые могут происходить при расположе ...
Определение норм тепловой защиты по условию санитарии
1.По нормам санитарии в промышленном здании перепад температур между воздухом и поверхностью стены не должен превышать Δtн=7˚С
#G0
Нормируемый температурный перепад
, °С, для
Здания и помещения
наружных
стен
покрытий и
чердачных
перекрытий
перекрытий
над проездами, подвал ...