Эффективность применения бетона в современном строительстве в значительной мере определяется темпами производства железобетонных изделий. Решающим средством ускорения твердения бетона в условиях заводской технологии сборного железобетона является тепловая обработка.
Как известно, цикл тепловой обработки бетонных и железобетонных изделий складывается из следующих периодов:
1) подъём температуры;
2) изотермическое выдержка при наивысшей принятой температуре;
3) охлаждение изделий.
1. Период подъёма температуры.
Преждевременное повышение температуры даже в условиях, исключающих возможность испарения влаги, отрицательно отражается на конечной прочности бетона. Оптимальное время подъёма температуры перед тепловой обработкой зависит от ряда факторов и оно тем меньше, чем тоньше помол цемента, чем меньше в нем белита и чем выше температура среды, в которой выдерживается бетон перед тепловой обработкой.
Постепенный подъём температуры не только повышает прочность бетона, но и обеспечивает получение более устойчивых прочностных показателей. За счёт нагрева скорость реакции гидратации цемента резко возрастает и ускоряется структурообразование бетона.
Схватывание бетона зависит не только от состава цемента и бетона, но и от температуры окружающей среды. Чем выше В/Ц и подвижность бетонной смеси и ниже температура среды, тем продолжительней подъём температуры. В зависимости от этих факторов время подъёма температуры для бетонов на портландцементе может изменяться от 2 до 10 ч. В нашем случае подъём температуры продолжается в течении 1,5 часа до температуры 80-85°С т.к. используется предварительный разогрев керамзитобетонной смеси.
2. Период изотермической выдержки
После подъема температуры до заданного максимума следует период изотермического прогрева, когда изделие выдерживается при требуемой постоянной температуре. В этот период необратимо фиксируются все те дефекты структуры, которые приобрел бетон в период нагрева.
Однако температурное равновесие в этот период может нарушаться вследствие экзотермии цемента. В этом случае происходят отдача тепла от изделия в окружающую среду и испарение воды. Изменение влажностного состояния и температуры изделия при тепловой обработке. В течение небольшого промежутка времени вследствие экзотермического эффекта температура бетона значительно возрастает и может превысить температуру среды. При этом максимальное превышение температуры среды может достигать 6 .8°С.
На данном этапе наблюдается наибольшая скорость формирования бетона. Разность температуры и влагосодержания по сечению бетона в этот период начинает уменьшаться и постепенно выравнивается, что значительно улучшается условия структурообразования, кроме того, в это время идёт дальнейшая гидратация цемента. Длительность периода определяется скоростью выравнивания температурного поля в бетоне и кинетикой химических реакций и составляет 7,5 часов.
3. Период охлаждения
При понижении температуры в тепловой установке в период охлаждения температура бетона должна снизиться до температуры окружающей среды.
В этот период бетон имеет большую температуру, и внутреннее давление паров в изделии превышает давление паров окружающей среды. За счет образовавшегося температурного градиента происходит интенсивное испарение влаги из бетона. По мере охлаждения изделия и испарения влаги с поверхности происходит миграция влаги из центральных участков изделия. Влага, удаляясь из изделия в виде пара, образует каналы, которые идут во все стороны от центральных участков изделия к периферии и соединяют между собой пустоты и поры, образовавшиеся в процессе приготовления и укладки бетона. Вследствие этого цементный камень имеет больше пор, и после тепловой обработки характеризуется направленной пористостью. Продолжительность периода охлаждения – 2 часа.
При выгрузке изделия из камеры температурный перепад между поверхностью изделий и температурой окружающей среды не должен превышать 40°С [7].
В итоге, тепловая обработка наружных стеновых панелей из керамзитобетона осуществляется насыщением пара в щелевой камере по следующему тепловому режиму:
Производство бетонных работ в зимних условиях. Выбор
методов работ зимнего бетонирования
В соответствии с заданием в курсовом проекте предусмотрено выполнение отдельных бетонных работ в зимних условиях. В данном случае требуется забетонировать ригель длинной 6м при температуре наружного воздуха – 18 0С, скорости ветра 12 м/сек. Расстояние от ЖБИ до строительной площадки- 12км, плотность бетона- ...
Конструирование и расчёт ростверка. Конструирование и
расчёт ростверка свайных фундаментов под колонны осей 101-131
(N=700кН)
Размер подколонника равен luc = buc = 90см (см. табл. 7.2 [5])
Глубина стакана hg = 60 см
Высота ростверка 1,2 м
Расстояние от дна стакана до подошвы ростверка
t b = 1,2 – 0,6 = 0,6м > 0,4м
Расстояние от граней колонны до внутренних граней свай:
с1 = 0,5(r1 – lc – bp) = 0,5(0,9 – 0,3 – 0,3) = 0,15м ...
Расчёт щелевой камеры
Для получения 70% от проектной прочности бетона за столь короткое время необходима тепловая обработка изделия. Для этого применяем установку непрерывного действия туннельного типа – щелевую камеру длинной 127,5 м.
Наружные стены камеры – железобетонные толщиной 0,4 м; потолок состоит из бетонной плиты 0,03 ...