Режим отопления
Страница 4

Механический КПД компрессора

= 0,05/0,0524 = 0,95 (30)

Эффективный КПД компрессора

ηе = ηi · ηмех = 0,73 · 0,95 = 0,7 (31)

11. Рассчитываем коэффициент преобразования теплового насоса m

= = 3,82 (32)

12. Для каждого последующего интервала температур наружного воздуха повторяются пункты 5-11 (табл.3)

13. Определяется годовой расход электроэнергии компрессором теплового насоса

, (33)

где Nei - эффективная мощность компрессора в текущем интервале температур наружного воздуха ni,

i - количество рассчитываемых интервалов работы теплонасосной установки.

0,0524 · 637 + 0,048 · 1222 + 0,022 · 2906 = 155,97 МВт·ч

14. Определяется расход электроэнергии на привод насосов за отопительный период А по (34).

(34)

где - продолжительность работы теплонасосной установки в отопительном периоде.

= 31,92 МВт·ч

15. Находится суммарное количество теплоты, выработанное теплонасосной установкой за отопительный период по (35)

= 127,4+ 178,9 + 116,3 = 422,6 МВт·ч (35)

Таблица 3. Результаты расчётов ТНУ в режиме системы теплоснабжения.

Величины

Интервалы температур

-32

30

-30

25

-25

20

-20

15

-15

10

-10

5

-5

0

0

8

1

2

3

4

5

6

7

8

9

1. Отопительная нагрузка Qо, МВт

1, 19

1,07

0,95

0,83

0,71

0,6

0,48

0,29

2. Температура сетевой воды в подающем трубопроводе t1, оС

106,71

99,36

91,87

84,22

76,4

69,03

60,74

46,85

3. Температура сетевой воды в обратном трубопроводе t20, оС

76,96

72,61

68,12

63,47

58,65

54,03

48,74

39,6

4. Температура воды на выходе из конденсатора tWK, оС

62,71

62,02

61,03

60,56

59,78

59,04

58,2

56,74

5. Температура конденсации tK, оС

60

60

48,23

6. Теплопроизводительность конденсатора Qк, МВт

0,2

0, 204

0,123

7. Количество тепла, выработанного теплонасосной установкой Qтну, МВт×ч

127,4

178,9

116,3

8. Количество тепла, отпущенного из теплосети Qт, МВт×ч

3

20,2

93,14

180,1

295,4

254,8

9. Холодопроизводительность испарителя Qи, МВт

0,150

0,181

0,121

11. Температура испарения tи, оС

13

10

7

12. Степень повышения давления p

3,37

3,60

4,08

13. Коэффициент подачи l

0,76

0,75

0,73

14. Расход хладогента через испаритель Gд, кг/ч

1,41

3,42

5,3

15. Удельная адиабатическая работа компрессора lад, кДж/кг

24,0

25,0

26,0

16. Адиабатическая мощность компрессора Nад, МВт

0,03

0,08

0,16

17. Индикаторная мощность компрессора, Ni, МВт

0,05

0,1

0,18

18. Действительный объём, описываемый поршнями компрессора, Vд, м3/ч

0,05

0,095

0,147

19. Теоретический объём, описываемый поршнями Vт, м3/ч

0,06

0,125

0, 193

20. Мощность трения, Nтр, МВт

0,002

0,005

0,007

21. Эффективная мощность компрессора Nе, МВт

0,052

0,105

0,187

22. Механический КПД компрессора

hl мех

0,96

0,95

0,96

23. Эффективный коэффициент преобразования m

3,82

1,94

0,66

Страницы: 1 2 3 4 5

Определение геометрических размеров фундамента
Глубину заложения стакана фундамента принимаем 90 см, что не менее значений: Нап ≥ 0,5+0,33hf = 0,5+0,33·1,1 = 0,896 м; Нап >1,5bcol = 1,5·0,5 = 0,75м; Нап ≥ лап = 33·1,6 = 52,8 см, где d = 1,6 см – диаметр продольной арматуры колонны; лап = 33 для бетона класса В 12,5. Расстоя ...

Расчёт потребности во временных административно-хозяйственных и санитарно-бытовых помещениях
По сетевому графику определяем максимальное число рабочих в наиболее загруженную смену (первую). Для этого проводим сечение по работам нулевого цикла, надземного цикла и отделке. Максимальное число рабочих соответственно равно: 8,9,47. Для расчёта необходимого количества временных сооружений принимаем число ...

Определение точки росы
Упругость насыщающих воздух водяных паров Eв=2063 Па при tв=18˚С Определяем фактическую упругость водяных паров по формуле: ев==Па Следовательно, точка росы tр=9,6˚С ...

Главное меню


Copyright © 2026 - All Rights Reserved - www.smartarchitect.ru