Режим отопления
Страница 4

Механический КПД компрессора

= 0,05/0,0524 = 0,95 (30)

Эффективный КПД компрессора

ηе = ηi · ηмех = 0,73 · 0,95 = 0,7 (31)

11. Рассчитываем коэффициент преобразования теплового насоса m

= = 3,82 (32) Строительные мачтовые подъемники очень удобны в эксплуатации, и оправдывают себя уже на первом объекте по строительству многоэтажного дома.

12. Для каждого последующего интервала температур наружного воздуха повторяются пункты 5-11 (табл.3)

13. Определяется годовой расход электроэнергии компрессором теплового насоса

, (33)

где Nei - эффективная мощность компрессора в текущем интервале температур наружного воздуха ni,

i - количество рассчитываемых интервалов работы теплонасосной установки.

0,0524 · 637 + 0,048 · 1222 + 0,022 · 2906 = 155,97 МВт·ч

14. Определяется расход электроэнергии на привод насосов за отопительный период А по (34).

(34)

где - продолжительность работы теплонасосной установки в отопительном периоде.

= 31,92 МВт·ч

15. Находится суммарное количество теплоты, выработанное теплонасосной установкой за отопительный период по (35)

= 127,4+ 178,9 + 116,3 = 422,6 МВт·ч (35)

Таблица 3. Результаты расчётов ТНУ в режиме системы теплоснабжения.

Величины

Интервалы температур

-32

30

-30

25

-25

20

-20

15

-15

10

-10

5

-5

0

0

8

1

2

3

4

5

6

7

8

9

1. Отопительная нагрузка Qо, МВт

1, 19

1,07

0,95

0,83

0,71

0,6

0,48

0,29

2. Температура сетевой воды в подающем трубопроводе t1, оС

106,71

99,36

91,87

84,22

76,4

69,03

60,74

46,85

3. Температура сетевой воды в обратном трубопроводе t20, оС

76,96

72,61

68,12

63,47

58,65

54,03

48,74

39,6

4. Температура воды на выходе из конденсатора tWK, оС

62,71

62,02

61,03

60,56

59,78

59,04

58,2

56,74

5. Температура конденсации tK, оС

60

60

48,23

6. Теплопроизводительность конденсатора Qк, МВт

0,2

0, 204

0,123

7. Количество тепла, выработанного теплонасосной установкой Qтну, МВт×ч

127,4

178,9

116,3

8. Количество тепла, отпущенного из теплосети Qт, МВт×ч

3

20,2

93,14

180,1

295,4

254,8

9. Холодопроизводительность испарителя Qи, МВт

0,150

0,181

0,121

11. Температура испарения tи, оС

13

10

7

12. Степень повышения давления p

3,37

3,60

4,08

13. Коэффициент подачи l

0,76

0,75

0,73

14. Расход хладогента через испаритель Gд, кг/ч

1,41

3,42

5,3

15. Удельная адиабатическая работа компрессора lад, кДж/кг

24,0

25,0

26,0

16. Адиабатическая мощность компрессора Nад, МВт

0,03

0,08

0,16

17. Индикаторная мощность компрессора, Ni, МВт

0,05

0,1

0,18

18. Действительный объём, описываемый поршнями компрессора, Vд, м3/ч

0,05

0,095

0,147

19. Теоретический объём, описываемый поршнями Vт, м3/ч

0,06

0,125

0, 193

20. Мощность трения, Nтр, МВт

0,002

0,005

0,007

21. Эффективная мощность компрессора Nе, МВт

0,052

0,105

0,187

22. Механический КПД компрессора

hl мех

0,96

0,95

0,96

23. Эффективный коэффициент преобразования m

3,82

1,94

0,66

Страницы: 1 2 3 4 5

Эскизный расчет опоры №2.
Опоры приняты массивные из «шок-блоков» с заполнением тела опоры монолитным бетоном на фундаментах из буронабивных столбов диаметром 1.5 м. Ригель принят применительно к типовому проекту серии 3.503.1–102.2. Ригели компонуются из двух блоков, объединенных между собой и с буронабивными столбами путем омоноли ...

Определение количества свай в ростверке
Количество свай в каждом фундаменте определим по формуле: где – сумма вертикальных составляющих расчетных нагрузок на фундамент; – коэффициент надежности, принимается по п.3.10 [1] =1,4; Определение нагрузки max, min нагруженной сваи : где – расчетная сжимающая сила, кН; – расчетные изгибающие мом ...

Обоснованность и открытость
Для того чтобы ваши материалы были убедительными, пользователь должен иметь возможность проверить приводимую в них информацию. Поэтому целесообразно приводить ссылки на использованные источники информации и документы, описания использованных методик. Разумеется, нет смысла перегружать множеством ссылок мате ...

Главное меню


Copyright © 2018 - All Rights Reserved - www.smartarchitect.ru