Научные исследования направлены на решение различных научных и практических задач; в теплоэнергетике это чаще всего: исследование рабочих процессов энергетических машин и установок (газодинамика, теплообмен, горение, термодинамика и т.д.), повышение их производительности, разработка принципов работы новых машин, перспективных преобразований энергии.
В общем случае, рассматривая научно-исследовательскую работу, можно выделить фундаментальные и прикладные исследования, а также опытно-конструкторские разработки. Последние направлены на создание конкретных образцов техники, разработку новых технологических процессов и имеют специфические особенности.
Рассмотрим основные этапы выполнения фундаментальных и прикладных научных исследований, которые имеют общие особенности (рис. 2.1.). Потребности науки и практики приводят к постановке определенных проблем в соответствующих областях знаний и отраслях производства, которые должны быть решены в процессе научного исследования.
Первым этапом научного исследования является подробный анализ современного состояния рассматриваемой проблемы. Он выполняется на основе информационного поиска с широким применением ЭВМ.
В результате анализа состояния проблемы составляются обзоры, рефераты и экспресс - информации, делается классификация основных направлений и ставятся конкретные задачи исследования. Далее осуществляется выбор метода исследования с использованием определенных критериев, составляется план – график выполнения работ, определяется ожидаемый экономический эффект.
Второй этап научного исследования сводится к выполнению поставленных на первом этапе задач. Чаще всего в фундаментальных и прикладных исследованиях используются математическое или физическое моделирование, а также сочетание этих методов.
Математическое моделирование включает в себя несколько этапов. Это составление математической модели исследуемого процесса на основе имеющихся сведений или использование готовой модели с правильным учетом основных и второстепенных факторов, что во многих случаях позволяет упростить составляемую модель. При этом для удобства решения и представления полученных результатов математическое описание явления выполняется в безразмерных единицах на основе теории подобия.
Далее осуществляется выбор метода решения (аналитического, приближенного) с учетом нескольких факторов – требуемой точности, затрачиваемого времени, материальных затрат. Вычислительный эксперимент, осуществляемый, как правило, с помощью ЭВМ, позволяет получить результат исследования в виде численных данных, которые затем подвергаются соответствующей обработке. В результате получаются расчетные уравнения, графики и номограммы, характеризующие закономерности изучаемого процесса. Следует отметить, что при проведении расчетов и обобщении полученных результатов широко применяются теория подобия, позволяющая получить уравнения подобия, и математическая теория планирования эксперимента, значительно сокращающая время на вычислительные процедуры.
Физическое моделирование может выполняться на модельной (лабораторной) или натурной установке, которые разрабатываются с учетом основных положений теории подобия физических явлений. Это позволяет определить геометрические размеры установок, диапазон изменения основных параметров, наметить необходимые измерения и подобрать соответствующую измерительную аппаратуру, предварительно оценить погрешность полученных результатов. Далее составляется программа проведения исследований.
Выполнение эксперимента может осуществляться по обычной схеме (схема последовательной переборки влияющих факторов) или с использованием математической теории планирования эксперимента. После выполнения программы исследований производится проверка правильности полученных результатов, в результате обобщения опытных данных получаются соответствующие уравнения (чаще всего в безразмерных единицах), оценивается погрешность расчета по ним. На всех этапах физического моделирования широко применяется ЭВМ – для управления экспериментом обобщения его результатов.
Расчет компенсаторов. Расчет проводим для двух
участков: надземного СП и подземного СМ.
Для участка СП
Рассчитываем тепловое удлинение трубопроводов Dl мм между неподвижными опорами.
где
L – длина трубопровода между неподвижными опорами, L=120 м;
t – температура теплоносителя, ОС;
tО – температура окружающей среды, ОС;
a - коэффициент линейного удлинения стальных труб.
Расчетное теп ...
Срок выполнения работ и расчет количества смен
Реконструкцию данного участка дороги предполагается вести один год. Каждый частный поток в данных климатических условиях имеет оптимальные сроки начала и окончания работ в зависимости от конструкции дорожной одежды, укладываемого слоя назначенных технологических процессов его осуществления. Для строительств ...
Расчет ростверка на продавливание угловой сваей
Nmax ≤ Nрасч
Nрасч=Rbt*h2[β1(b02+c02/2)+ β2(b01+c01/2)]=0.75*0.4(1(0.36+0.99/2)+0.73(0.4+0))=344.1
Проверка условия:
253,87<344,1 – условие выполнено. ...